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1. The discovery of quaternions by W. R. Hamilton in 1843 has led
to an extensive theory of linear algebras (or closed systems of hyper-
complex numbers) in which the quaternion algebra plays an important
r6le. Frobenius' proved that the only real linear associative algebras
in which a product is zero only when one factor is zero are the real number
system, the ordinary complex number system, and the algebra of real
quaternions. A much simpler proof has been given by the writer.2 Later,
the writer3 was led to quaternions very naturally by means of the four-
parameter continuous group which leaves unaltered each line of a set
of rulings on the quadric surface x; + x' + x, + x' = O.
The object of the present note is to derive the algebra of quaternions

and its direct generalizations without assuming the associative or com-
mutative law. I shall obtain this interesting result by two distinct
methods.

2. The term field will be employed here to designate any set of ordinary
complex numbers which is closed under addition, subtraction, multipli-
cation, and division. Thus all complex numbers form a field, likewise
all real numbers, or all rational numbers.

Just as a couple (a, b) of real numbers defines an ordinary complex
number a + bi, where i2 = - 1, so also an n-tuple (xI,.., X.) of numbers
of a field F defines a hypercomplex number

x = x,e, + X2e2 + . . + X,ex, (1)

where the units ei, ..., ex are linearly independent with respect to the
field F and possess a multiplaction table

e,ej = 7Jkek (i,j = 1, ...,n), (2)
k-I
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n which the y's are numbers of F. Let x' = 2xiei be another hypercom-
plex number whose coordinates x, are numbers of F. Then shall

xx' = E~x,xj-eej,x x ' = (Xi x)ei, fx = xf = fx1.ei,
i,j1 si- tIi

when f is in F, so that multiplication is distributive. Under these assump-
tions, the set of all numbers (1) with coordinates in F shall be called a
linear algebra over F.

3. We assume that ei is a principal unit (modulus), so that elx = xel = x
for every number x of the algebra, and write 1 for el. We assume that
every number of the algebra satisfies a quadratic equation with coefficients
in F. If e2 + 2ae + b = 0, (e + a)2 = a2-b, so that we may take
the units to be 1, E2, ..., E,n where E, = sii, a number of F. For i and
j distinct and >1, Ei Ei satisfies a quadratic, so that (Ei Ej)2 =
sii + sjj, (E,Ej + EjEj) is a linear function of Ei = Ej. Thus EiEj +
E,E, is a linear function of Ei + Ej and of Ei-Ej, and hence is a number
2sij = 2sji of F.

Let u2, ..., u91 be arbitrary numbers of F and write U = ZukEk. Then
U2 equals

Q = Sk
k,l -2

It is a standard theorem that Q can be reduced to 2c,vj2 by a linear trans-
formation Uk = Zakiv1 with coefficients in F and of determinant *0.
Write

el = aidEk (I = 2, .. n).
k,l 2

Then 1, e2, ..., e, are linearly independent and may be taken as the new
units of our algebra over F. Then

U = aklviEk = vie,
k,l I

U2 = EVkveke =E Civi2.
k,l

Hence
e= ct, eej + eje = 0 (i,j= 2, ...,n, i* j) (3)

4. Write x = xi + Zx,ei. Then (x-xc)2= Zc,x. This gives xx' =
x'x = o, where
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n n

x= 2x,-X = Xi-E X,ei, a = X2-E cjX.

i;-2 i_-2

We shall call x' the conjugate to x and a = o(x) the norm of x. Hence-
the product of any number and its conjugate in either order equals its
norm. We assume that the norm of a product equals the product of the
norms of the factors:

a(x)a(t) = a(X), if xt = X, (4)
and shall investigate the resulting types of linear algebras. We assume
also that each ci * 0 in (3).

5. By (2) the coordinates of X = xt are Xk = 2Xitj,Yiik. Since ei2= ci,
we have 7ii = ci, yiik = 0 (i> 1, k> 1). Hence

Xi =Xiti + Exitici + Exitryijl22 ~~~~~~2

iJC s ~~~~~~} ~~n

/ Xk = Xlk + Xktl + Xitj7Yik. (5)
ij =2
i i (k>1)

Since this transformation is the identity X = x if t = 1, we obtain a
infinitesimal transformation by taking ti 1, a,= 5t, i = O(i*l, j):

x = X1-Xi= { Cxj + -yijlx5} bt,5x, = { Xl + yjjX, }at,
i=2 i=2
s*j *

aXk = { 7ijXis}at (kt 1,j). (6)
i-2
i*j

For these s's, a(t) is unity to within an infinitesimal of the second order.
Hence the increment to a(x) must vanish identically, so that

ij = ijj = NW = 0 (1, i, j distinct), (7)
CkYijk + ci 'YJ = 0 (1, i, j, k distinct). (8)

By (7), (5) simplifies to

X1 = x1t1 + x,tici, Xk = Xltk + Xktl + xitj7yi;k (k> 1), (9)
i=2

where, in the final sum, i and j range over distinct values from 2, ...,n
excluding k. This final sum is, therefore, absent if4 n=3; whence v(X)
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has the term 2x2t2c2-x433 which does not occur in or(x)ar(t). But c2c3 *0
by hypothesis. Hence n> 3.

Hitherto we have not examined the conditions which follow from the
final equations (3); these are

7ysk = yijk (i, =-2, ..,n;i*i) (10)
6. Taking n = 4 and applying (10), we see that (9) become
Xi Xltl + C2X242 + C3X3 + C04x4 X2=X1& + X241 + Y2(X3t4-X43), 11

)XS=x1t3 + X41 + 24(x2h-X441), X4=X1e4 + X4S + '24(X2t3-X3X2).
These transformations do not in general form a group and hence are not
generated by the corresponding infinitesimal transformations employed
above. Hence it remains to require that a(X) = a(x)o(t) under the
transformations (11). The conditions are seen to be

2 2 2

C3C4 -C2 I342, C2C4 = -C3Y 243, C2C3 = -C47 24, C4Y2S4 = C2'342 = -C37243,

the first two of which reduce to the third by means of the last three equa-
tions. To these last can be reduced all the conditions (8) by means of (10).
Applying the transformation of variables which multiplies X4, t4, X4

by 'y4, and leaves the remaining xi, ti, X, unaltered, we get

X1=X1X1 + C2X262 + C0Xa63-C2C3X44, X2 x= 2 + X201-C044 + CX43, (111)

X3= Xlt3 + X341 + C2x24 -C2X402, X4 = Xlt4 + X41 + X263-X42-
These are the values obtained by Lagrange' in his generalization a(x)oa)=
o(X) of Euler's formula for the product of two sums of four squares.
Then xt = X gives the following multiplication table for the units:

I2 2 2

e, = C2, eJ = c3, e, = -C2C3, e2e3 = e4, e3e2 =-e4,(12)
e2e4 = c2e3, e4e2 = -c2e3, ese4 = -C3e2, e4e3 = c3e2.

This algebra is associative and is the direct generalization of quaternions
to a general field F which the writer6 obtained elsewhere from assump-
tions including associativity. The four-rowed determinants of the general
number x of this algebra equals ¢2(x). The case C2 = C3 = -1 gives the
algebra of quaternions, for which it is customary to write i, j, k instead
of our units e2, e3, e4.

7. It is not very laborious to show by the above method that the cases
n = 5 and n = 6 are excluded. However, Hurwitz has proved that a
relation of the form a(x)o(t) = a(X) is impossible if n * 1, 2, 4,8. A
slight simplification of his proof, together with an account of the history
of this problem, has been given by the writer.7 Hurwitz made no attempt
to find all solutions when n = 4. We proceed to treat this problem.
Consider the case c, = -1 to which the general case may be reduced

by an irrational transformation. Then r(x) = 2x9. We investigate
the linear algebras having property (4), i. e.,

(x" +. .+ xn)(1 +.. . + ) = Xl +. . .+ X, (13)
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if

Xk = s lik Xi) ti (k -l, .. n). (14)
j=1 ti-I

The matrix M of this substitution has the element Z, 7yijkxi in the kth
row and jth column. If this substitution is applied to a quadratic form
in X1,. . . ,X. of matrix Q, it is a standard theorem that we obtain a quadratic
form inu, ..., in, whose matrix is 'M'QM, where M' is the transposed
of M, being obtained from M by the interchange of its rows and columns.
In our problem, Q is the identity matrix I whose elements are all zero
except the diagonal elements which are 1. Hence, by (13),

M'M = (x: + .. + x)I. (15)
When a homogeneous polynomial a(xi, ..., x,) of any degree has the

property (4) of possessing a theorem of multiplication, the writer8 has
proved that we may apply a linear transformation on xi, ..., x, which
leave a(x) unaltered and one on ti, ..., E. which leaves au(t) unaltered
such that the new algebra has the principal unit el, so that 'Y1, and 7,lk
are both 0 ifj * k, and both unity if j = k.
Hence M = x1M1 + ... + x.M., where yijk is the element in the

eth row and jth column of Mi, whence Ms = I. Thus (15) gives

= -Mi. MMi= 1, M',M, + MMi = 0 (i> 1, j> 1, j * i). (16)
In view of the values of yj,k, and M, = -Mi, we have, when n = 4,

0 -1 0 0 0 0 -1 0

M2=Q Ms ( °-)
\° 7223 0- -OY234/ 1 7323 0 -733
0 7224 7234 0 0 7324 7334

0 0 -1

= 0 z;:)-.74
0 'Y4 0 - 74M
1 Y42 743 0

By MtM = I, we have M2i = -I, which gives
722= 72 = 'Yn3 = UU = '4y = NU= 0, 2 = 2 = = 1,

where y = 7234, 5 = 7324, e = y. Hence

O -1 0 0 0 0 -1 0 0 0 0-1
/ 0\ _(0 0 o-a M~00 eo\

M2= 1 0 0 ° M3 1 O O OM41 ( (17)

O O ' O O a0 0 10 0 0

The final condition (16) states that M,Mj is skew-symmetric. The
products M2M3, M2M4, M&M4 of matrices (17) are seen at once to be
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skew-symmetric if and only if 6 = -y, e = -y, and then M2M3 = yM4,
M2M4 = -YMS, M3M4 = 'YM2. Writing i, j, k for M2, M3, 'yM4, we have
the multiplication table of quaternions. Or we may form the matrix
M and write Xk for the sum of the products of the elements of its kth
row by tl, . . ., C, and take 'y = 1 (by multiplying x4, t4, X4 by ay); we
obtain (1I1') for c2 = C3 = -1. Hence we have again obtained the quatern-
ion algebra without assuming the associative law. The case i = 8 is
being investigated in this way by one of my students.
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NOVOCAINE AS A SUBSTITUTE FOR CURARE1
By JOHN F. FULTON, JR.

HARVARD UNIVgRSITY

Communicated by G. H. Parker, March 3, 1921

Since the recent war, the need of a substitute for the Indian arrow poison,
curare, has been keenly felt in many physiological laboratories. While
investigating the activity of certain local anesthetics, it was found that
novocaine, in its effect upon the neuro-muscular mechanism of frogs,
duplicates in many particulars the unique action of curare.

If the sciatic nerve of a sciatic-gastrocnemius preparation is bathed in
a strong solution of novocaine (2.5 per cent in water or in physiological
salt solution) for as long as twenty minutes, no decrease in its conduc-
tivity can be observed. However, if the muscle itself is bathed in such a
solution (by direct immersion or, "painting" with a camel's hair brush) the
power of reacting to nervous stimulation is destroyed within three to
five minutes, though ability to respond by contraction to direct electrical
stimulation remains unimpaired. Thus, in the action of novocaine there
is a complete duplication of th. properties originally described by Claude
Bernard for curare.
Whether novocaine acts directly upon the end-plates of the motor

fibers or upon some membrane intermediate between the plates and the
1 Contributions from the Zo6logical Laboratory of the Museum of Comparative

ZoSlogy at Harvard College. No. 330.
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